Tilting Uranus: Collisions versus Spin–Orbit Resonance

Author:

Rogoszinski ZeeveORCID,Hamilton Douglas P.ORCID

Abstract

Abstract In this paper, we investigate whether Uranus’s 98° obliquity was a by-product of a secular spin–orbit resonance assuming that the planet originated closer to the Sun. In this position, Uranus’s spin precession frequency is fast enough to resonate with another planet located beyond Saturn. Using numerical integration, we show that resonance capture is possible in a variety of past solar system configurations but that the timescale required to tilt the planet to 90° is of the order ∼108 yr—a time span that is uncomfortably long. A resonance kick could tilt the planet to a significant 40° in ∼107 yr only if conditions were ideal. We also revisit the collisional hypothesis for the origin of Uranus’s large obliquity. We consider multiple impacts with a new collisional code that builds up a planet by summing the angular momentum imparted from impactors. Because gas accretion imparts an unknown but likely large part of the planet’s spin angular momentum, we compare different collisional models for tilted, untilted, spinning, and nonspinning planets. We find that a 1 M strike is sufficient to explain the planet’s current spin state, but that two 0.5 M collisions produce better likelihoods. Finally, we investigate hybrid models and show that resonances must produce a tilt of at least ∼40° for any noticeable improvements to the collision model. Because it is difficult for spin–orbit resonances to drive Uranus’s obliquity to 98° even under these ideal conditions, giant impacts seem inescapable.

Funder

NASA Earth and Space Science Fellowship

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3