A Deep Search for Emission from “Rock Comet” (3200) Phaethon at 1 au

Author:

Ye QuanzhiORCID,Knight Matthew M.ORCID,Kelley Michael S. P.ORCID,Moskovitz Nicholas A.ORCID,Gustafsson AnnikaORCID,Schleicher David

Abstract

Abstract We present a deep imaging and spectroscopic search for emission from (3200) Phaethon, a large near-Earth asteroid that appears to be the parent of the strong Geminid meteoroid stream, using the 4.3 m Lowell Discovery Telescope. Observations were conducted on 2017 December 14–18 when Phaethon passed only 0.07 au from the Earth. We determine the 3σ upper level of dust and CN production rates to be 0.007–0.2 kg s−1 and 2.3 × 1022 molecules s−1 through narrowband imaging. A search in broadband images taken through the SDSS r′ filter shows no 100 m class fragments in Phaethon’s vicinity. A deeper but star-contaminated search also shows no sign of fragments down to 15 m. Optical spectroscopy of Phaethon and comet C/2017 O1 (ASASSN) as a comparison confirms the absence of cometary emission lines from Phaethon and yields 3σ upper levels of CN, C2, and C3 of ∼1024–1025 molecules s−1, 2 orders of magnitude higher than the CN constraint placed by narrowband imaging, due to the much narrower on-sky aperture of the spectrographic slit. We show that narrowband imaging could provide an efficient way to look for weak gas emission from near-extinct bodies near the Earth, though these observations require careful interpretation. Assuming Phaethon’s behavior is unchanged, our analysis shows that the DESTINY+ mission, currently planning to explore Phaethon in 2026, may not be able to directly detect a gas coma.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3