JWST Near-infrared Spectroscopy of the Lucy Jupiter Trojan Flyby Targets: Evidence for OH Absorption, Aliphatic Organics, and CO2

Author:

Wong IanORCID,Brown Michael E.ORCID,Emery Joshua P.ORCID,Binzel Richard P.ORCID,Grundy William M.ORCID,Marchi SimoneORCID,Martin Audrey C.ORCID,Noll Keith S.ORCID,Sunshine Jessica M.ORCID

Abstract

Abstract We present observations obtained with the Near Infrared Spectrograph on JWST of the five Jupiter Trojans that will be visited by the Lucy spacecraft—the Patroclus–Menoetius binary, Eurybates, Orus, Leucus, and Polymele. The measured 1.7–5.3 μm reflectance spectra, which provide increased wavelength coverage, spatial resolution, and signal-to-noise ratio over previous ground-based spectroscopy, reveal several distinct absorption features. We detect a broad OH band centered at 3 μm that is most prominent on the less-red objects Eurybates, Patroclus–Menoetius, and Polymele. An additional absorption feature at 3.3–3.6 μm, indicative of aliphatic organics, is systematically deeper on the red objects Orus and Leucus. The collisional fragment Eurybates is unique in displaying an absorption band at 4.25 μm that we attribute to bound or trapped CO2. Comparisons with other solar system small bodies reveal broad similarities in the 2.7–3.6 μm bands with analogous features on Centaurs, Kuiper Belt objects (KBOs), and the active asteroid 238P. In the context of recent solar system evolution models, which posit that the Trojans initially formed in the outer solar system, the significant attenuation of the 2.7–3.6 μm absorption features on Trojans relative to KBOs may be the result of secondary thermal processing of the Trojans’ surfaces at the higher temperatures of the Jupiter region. The CO2 band manifested on the surface of Eurybates suggests that CO2 may be a major constituent in the bulk composition of Trojans, but resides in the subsurface or deeper interior and is largely obscured by refractory material that formed from the thermophysical processes that were activated during their inward migration.

Publisher

American Astronomical Society

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3