Dual-band Fourier-transform Millimeter-wave Spectrometry for In Situ Gas Sensing

Author:

Drouin Brian J.ORCID,Nemchick Deacon J.,Nole Ananda,Tang Adrian,Wu Chung-Tse Michael,Khiabani Neda,Alonso Maria,Chang Mau-Chung Frank

Abstract

Abstract The exploration of icy body composition in the solar system has often involved spectroscopic measurements of volatiles detected with remote sensing, such measurements portray materials naturally expelled from the surface that enter the exosphere and potentially escape into space. Variations in the ratio of deuterium and hydrogen in these measurements have led to inconclusive hypotheses regarding potential cometary origins of Earth’s ocean water and/or organics. Observational biases regarding unknown previous processing of the observable ejected materials necessitates studies of more dormant, less-processed bodies. Landed missions on comets have brought focus onto the development of small, sensitive instrumentation capable of similar composition measurements of the nascent surface and near-surface materials. We present an evolution of our compact Fourier-transform millimeter-wave cavity spectrometer that is tuned for sensitivity at 80.6 and 183 GHz where HDO and H2O exhibit resonance features. We discuss both a low-SWaP (size–weight and power) architecture that uses custom microchip transceiver elements as well as a modular configuration using traditional GaAs-based millimeter-wave hardware. New design features for these systems including quartz-based coupling elements, system thermal management, and a separable clocking board are discussed in addition to sensitivity studies and applications in potential mission scenarios.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3