Pluto’s Haze Abundance and Size Distribution from Limb Scatter Observations by MVIC

Author:

Kutsop N. W.ORCID,Hayes A. G.ORCID,Buratti B. J.ORCID,Corlies P. M.ORCID,Ennico K.,Fan S.ORCID,Gladstone R.ORCID,Helfenstein P.ORCID,Hofgartner J. D.ORCID,Hicks M.,Lemmon M.ORCID,Lunine J. I.ORCID,Moore J.,Olkin C. B.ORCID,Parker A. H.ORCID,Stern S. A.ORCID,Weaver H. A.ORCID,Young L. A.ORCID

Abstract

Abstract The New Horizons spacecraft observed Pluto and Charon at solar-phase angles between 16° and 169°. In this work, we use the Multispectral Visible Imaging Camera (MVIC) observations to construct multiwavelength phase curves of Pluto’s atmosphere, using the limb scatter technique. Observational artifacts and biases were removed using Charon as a representative airless body. The size and distribution of the haze particles were constrained using a Titan fractal aggregate phase function. We find that monodispersed and log-normal populations cannot simultaneously describe the observed steep forward scattering, indicative of wavelength-scale particles, and the non-negligible backscattering indicative of particles much smaller than the wavelength. Instead, we find it necessary to use bimodal or power-law distributions, especially below ∼200 km, to properly describe the MVIC observations. Above 200 km, where the atmosphere is isotropically scattering, a monodisperse, log-normal, or a bimodal/power law approximating a monodispersed population is able to fit the phase curves well. As compared to the results of previously published articles, we find that Pluto’s atmosphere must contain haze particle number densities an order of magnitude greater for small (∼10 nm) and large (∼1 μm) radii, and relatively fewer intermediate sizes (∼100 nm). These conclusions support a lower aggregate aerosol growth rate than that found by Gao et al., indicating a higher charge-to-radius ratio, upwards of 60e μm−1. In order to generate large particles with a lower growth rate, the atmosphere must also have a lower sedimentation velocity (<∼0.01 m s−1 at 200 km), which is possible with a fractal dimension of less than 2.

Funder

NESSF

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3