Constraints on the Long-term Existence of Dilute Cores in Giant Planets

Author:

Tulekeyev A.ORCID,Garaud P.ORCID,Idini B.ORCID,Fortney J. J.ORCID

Abstract

Abstract Post-Cassini ring seismology analysis suggests the existence of a stable stratification inside Saturn that extends from the center to ∼60% of its radius, in what is recognized today as Saturn’s dilute core. Similarly, gravity measurements on Jupiter suggest the existence of a dilute core of weekly constrained radial extent. These cores are likely in a double-diffusive regime, which prompts the question of their long-term stability. Indeed, previous direct numerical simulation (DNS) studies in triply periodic domains have shown that, in some regimes, double-diffusive convection tends to spontaneously form shallow convective layers, which coarsen until the region becomes fully convective. In this paper, we study the conditions for layering in double-diffusive convection using different boundary conditions, in which temperature and composition fluxes are fixed at the domain boundaries. We run a suite of DNSs varying microscopic diffusivities of the fluid and the strength of the initial stratification. We find that convective layers still form as a result of the previously discovered γ-instability, which takes place whenever the local stratification drops below a critical threshold that only depends on the fluid diffusivities. We also find that the layers grow once formed, eventually occupying the entire domain. Our work thus recovers the results of previous studies, despite the new boundary conditions, suggesting that this behavior is universal. The existence of Saturn’s stably stratified core, today, therefore suggests that this threshold has never been reached, which places a new constraint on scenarios for the planet’s formation and evolution.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3