Exploring the Shallow Subsurface of Mars with the Ma_MISS Spectrometer on the ExoMars Rover Rosalind Franklin

Author:

De Sanctis M. C.ORCID,Altieri F.ORCID,Ammannito E.,De Angelis S.,Ehlmann B.ORCID,Ferrari M.,Frigeri A.,Fonte S.,Formisano M.ORCID,Giardino M.,Apuzzo A.,Brossier J.,Costa N.,Rossi L.,Vizzini G.,Ciarletti G. V.,Westall F.

Abstract

Abstract An essential part of the Exomars 2022 payload is the Mars Multispectral Imager for Subsurface Studies (Ma_MISS) experiment hosted by the drill system. Ma_MISS is a visible and near-infrared (0.4–2.3 μm) miniaturized spectrometer with an optical head inside the drill tip capable of observing the drill borehole with a spatial resolution of 120 μm. Here we report on how the Ma_MISS hyperspectral information provides in situ investigation of the subsurface at very fine resolution, prior to the collection of the samples that will be manipulated and crushed for further analysis by the analytical laboratory on the rover. Ma_MISS is the instrument that will closely investigate the subsurface mineralogical characteristics in its original geologic context at depths never reached before in Mars exploration. Ma_MISS recognizes all the major spectral features of the clays, basaltic, and minor phases expected at the ExoMars landing site, Oxia Planum. The high spatial resolution on the borehole wall is such that single grains of about 100 μm can be distinguishable in the assemblage of minerals observed by Ma_MISS. The spatial distribution of the mineralogies within the borehole walls is associated with the rocks and the processes that put these materials in place and possibly altered them with time, characterizing the habitats found in the stratigraphic record, indicating which ones are the most suitable to have held or to be holding nowadays traces of life.

Funder

Agenzia Spaziale Italiana

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3