The Spatial Distribution and Temperature of Mercury's Potassium Exosphere

Author:

Lierle Patrick,Schmidt CarlORCID,Baumgardner Jeffrey,Moore Luke,Bida Tom,Swindle Ryan

Abstract

Abstract Aside from the well-studied sodium doublet, the potassium D lines are the only optical emissions in Mercury's exosphere that are amply bright to contrast with the dayside disk. Measurements of the K exosphere are limited compared to Na, but the K regolith abundance is better constrained, so new insights may help to understand surface–exosphere coupling. We use imaging spectroscopy to map the K brightness over Mercury's evening hemisphere, which shows an enhancement at low to midlatitudes, well equatorward of the Na peak. Both Na and K are brighter in the south, but the ratio between northern and southern hemisphere K emission appears less symmetric than that of Na. The disk-averaged Na/K column density ratio is between 70 and 130. During the same night, the dayside emission was mapped, we used a high-resolution spectrograph to attempt to resolve the Na and K line widths on the nightside. Forward-modeling the alkaline line profiles with hyperfine structure gives Na D1 and D2 line widths of 1114 ± 50 K and 1211 ± 45 K, respectively. D2 may appear hotter solely because its higher opacity adds preferentially to the profile wings. The K line width is surprisingly cold and cannot be easily distinguished from the instrumental line width, even at R = 137,500. Line widths roughly constrain K gas between the surface temperature and 1000 K, making it the coldest metallic constituent of Mercury's exosphere. Although Na and K are chemical analogs and often assumed to have similar properties, the results herein illustrate quite different characteristics between these elements in Mercury's exosphere.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mercury's Exosphere as Seen by BepiColombo/PHEBUS Visible Channels During the First Two Flybys;Journal of Geophysical Research: Planets;2023-12

2. Rapid Imaging Planetary Spectrograph;Publications of the Astronomical Society of the Pacific;2023-09-01

3. Sodium Brightening of (3200) Phaethon near Perihelion;The Planetary Science Journal;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3