Pluto’s Surface Mapping Using Unsupervised Learning from Near-infrared Observations of LEISA/Ralph

Author:

Emran A.ORCID,Dalle Ore C. M.ORCID,Ahrens C. J.,Khan M. K. H.,Chevrier V. F.ORCID,Cruikshank D. P.ORCID

Abstract

Abstract We map the surface of Pluto using an unsupervised machine-learning technique using the near-infrared observations of the LEISA/Ralph instrument on board NASA’s New Horizons spacecraft. The principal-component-reduced Gaussian mixture model was implemented to investigate the geographic distribution of the surface units across the dwarf planet. We also present the likelihood of each surface unit at the image pixel level. Average I/F spectra of each unit were analyzed—in terms of the position and strengths of absorption bands of abundant volatiles such as N2, CH4, and CO and nonvolatile H2O—to connect the unit to surface composition, geology, and geographic location. The distribution of surface units shows a latitudinal pattern with distinct surface compositions of volatiles—consistent with the existing literature. However, previous mapping efforts were based primarily on compositional analysis using spectral indices (indicators) or implementation of complex radiative transfer models, which need (prior) expert knowledge, label data, or optical constants of representative end-members. We prove that an application of unsupervised learning in this instance renders a satisfactory result in mapping the spatial distribution of ice compositions without any prior information or label data. Thus, such an application is specifically advantageous for a planetary surface mapping when label data are poorly constrained or completely unknown, because an understanding of surface material distribution is vital for volatile transport modeling at the planetary scale. We emphasize that the unsupervised learning used in this study has wide applicability and can be expanded to other planetary bodies of the solar system for mapping surface material distribution.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3