Stable Brine Layers beneath Europa’s Chaos

Author:

Chivers C. J.ORCID,Buffo J. J.,Schmidt B. E.

Abstract

Abstract The formation mechanism of Europa’s large chaos terrain (>∼100 km diameter) and associated lenticulae (<∼10 km diameter) has been debated since their observations by the Galileo spacecraft. Their geomorphology and distribution suggest there may be reservoirs of saline liquid water 1–3 km beneath the surface—the “shallow water” model—generated by injection of ocean water or melting of the ice shell. Recent investigations on the evolution of small shallow-water bodies (≤103 km3) suggests that salts with a small effect on melting point (MgSO4) can extend the lifetime of saline bodies by ∼5% compared to freshwater reservoirs. However, sodium chloride, identified as a potential oceanic salt, has a significantly stronger impact on the freezing point, suggesting a further extension of liquid lifetimes. Moreover, the substantial volumes of liquid water (∼104 km3) beneath large chaos could be melted in situ rather than injected through a fracture, implying a distinct chemistry and formation environment. Here, we use numerical models to explore how the chemistry and disparate origins of shallow water control its evolution and lifetime. For small, injected sills, we find that NaCl can extend their liquid lifetime to ∼140 kyr—up to a ∼60% increase over freshwater sills. Saline melt lenses will last at least 175 kyr but, in contrast to sills, may persist as a stable layer of brine beneath the surface for over 500 kyr. Our results provide further support for the presence of liquid water at shallow depths within Europa’s ice shell today.

Funder

NASA ∣ SMD ∣ Planetary Science Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3