Multiple Moist Climate Equilibrium States on Arid Rocky M-dwarf Planets: A Last-saturation Tracer Analysis

Author:

Ding FengORCID,Wordsworth Robin D.ORCID

Abstract

Abstract Terrestrial-type exoplanets orbiting nearby red dwarf stars (M dwarfs) are the first potentially habitable exoplanets suitable for atmospheric characterization in the near future. Understanding the stability of water in cold-trap regions on such planets is critical because it directly impacts transmission spectroscopy observations, the global energy budget, and long-term surface water evolution. Here we diagnose the humidity distribution in idealized general circulation model simulations of terrestrial-type exoplanets. We use the “tracer of last saturation” technique to study the saturation statistics of air parcels. We find that on synchronously rotating planets the water vapor abundance in the nightside upper troposphere depends weakly on planetary rotation, while more water vapor builds up in the nightside lower troposphere on fast-rotating planets. We then discuss how last-saturation statistics can elucidate the multiple moist climate equilibrium states on synchronously and asynchronously rotating arid planets. We show that the multiple moist climate states arise from the cold-trapping competition between the substellar upper atmosphere and cold surface regions. We find that fast synchronously rotating planets tend to trap surface water on the nightside as a result of their weak atmospheric and strong surface cold traps compared to the slow-rotating case. These results elucidate the nature of the water cycle on arid rocky exoplanets and will aid interpretation of atmospheric observations in the future.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3