Abstract
Abstract
Polar vortices are a prominent feature in Titan's stratosphere. The Cassini mission has provided a detailed view of the breakdown of the northern polar vortex and formation of the southern vortex, but the mission did not observe the full annual cycle of the evolution of the vortices. Here we use a TitanWRF general circulation model simulation of an entire Titan year to examine the full annual cycle of the polar vortices. The simulation reveals a winter weakening of the vortices, with a clear minimum in polar potential vorticity and midlatitude zonal winds between winter solstice and spring equinox. The simulation also produces the observed postfall equinox cooling followed by rapid warming in the upper stratosphere. This warming is due to strong descent and adiabatic heating, which also leads to the formation of an annular potential vorticity structure. The seasonal evolution of the polar vortices is very similar in the two hemispheres, with only small quantitative differences that are much smaller than the seasonal variations, which can be related to Titan's orbital eccentricity. This suggests that any differences between observations of the northern hemisphere vortex in late northern winter and the southern hemisphere vortex in early winter are likely due to the different observation times with respect to solstice, rather than fundamental differences in the polar vortices.
Funder
NASA Solar System Workings
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献