Abstract
Abstract
Prior investigations of the behavior of regolith on the surface of planetary bodies has considered the motion and interactions of individual grains. Recent work has shown the significance of cohesion in understanding the behavior of planetary regolith, especially on small, airless bodies. Surficial regolith grains may detach from a planetary body due to a variety of phenomena, including aeolian effects, spacecraft operations, micrometeoroid bombardment, and electrostatic lofting. It is well known in terrestrial powder handling that cohesive powders tend to form clumps. We present a theory for the size of regolith clumps that are likely to form and be easier to detach from a surface than their constituent grains, assuming monodisperse, spherical grains. The model predictions are significant for our interpretation of the surface of asteroids, as well as understanding a variety of phenomena on planetary bodies and designing of sampling spacecraft.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献