VLT/MUSE Characterization of Dimorphos Ejecta from the DART Impact

Author:

Murphy Brian P.ORCID,Opitom CyrielleORCID,Snodgrass ColinORCID,Knight Matthew M.ORCID,Li Jian-YangORCID,Chabot Nancy L.ORCID,Rivkin Andrew S.ORCID,Green Simon F.ORCID,Guetzoyan PalomaORCID,Gardener DanielORCID,de León JuliaORCID

Abstract

Abstract We have observed the Didymos-Dimorphos binary system with the MUSE integral field unit spectrograph mounted at the Very Large Telescope before and after DART impact and captured the ensuing ejecta cone, debris cloud, and tails at subarcsecond resolutions. We targeted the Didymos system over 11 nights from 2022 September 26 to October 25 and utilized both narrow- and wide-field observations with and without adaptive optics, respectively. We took advantage of the spectral–spatial coupled measurements and produced both white-light images and spectral maps of the dust reflectance. We identified and characterized numerous dust features, such as the ejecta cone, spirals, wings, clumps, and tails. We found that the base of the sunward edge of the wings, from October 3 to 19, is consistent with maximum grain sizes on the order of 0.05–0.2 mm and that the earliest detected clumps have the highest velocities, on the order of ;10 m s−1. We also see that three clumps in narrow-field mode (8″ × 8″) exhibit redder colors and slower speeds, around 0.09 m s−1, than the surrounding ejecta, likely indicating that the clump is composed of larger, slower grains. We measured the properties of the primary tail and resolved and measured the properties of the secondary tail earlier than any other published study, with first retrieval on October 3. Both tails exhibit similarities in curvature and relative flux; however, the secondary tail appears thinner, which may be caused by lower-energy ejecta and possibly a low-energy formation mechanism such as secondary impacts.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3