Abstract
Abstract
The formation and stability of brines on the surface of present-day Mars remains an important question to resolve the astrobiological potential of the red planet. Although modeling and experimental work have constrained the processes controlling the stability of single-salt brines exhibiting low freezing temperatures, such as calcium perchlorate, the Martian regolith is far more complex because multiple salts coexist in various concentrations, leading to brines whose behavior remains untested. Here we modeled the stability of complex brines of compositions determined from the Phoenix lander’s Wet Chemistry Laboratory. We find that such brines would form in equilibrium with sodium and magnesium perchlorates, chlorides, and calcium chlorate, but never calcium perchlorate, which has been widely considered as the most likely to produce brines on Mars. Furthermore, we find that only chlorate-rich brines can potentially remain liquid, for small periods of time, at temperatures compatible with those measured by the Phoenix lander. Therefore, liquid brines remain overly unstable under present-day Martian conditions and are unlikely to contribute to surface geomorphological activity, such as recurring slope lineae. In these conditions, of cold and salty brines, the present-day Martian surface remains highly unhabitable.
Funder
NASA ∣ Science Mission Directorate
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献