Abstract
Abstract
Several of the highlands of Venus exhibit unexpectedly low radar emissivity compared to that of the lowlands. The source has been hypothesized to be a mineral with a high dielectric constant. Recently HgTe (coloradoite) has been suggested to explain the low emissivity signal; however, little research has been completed to verify its stability on Venus. In this project, we used a Gibbs free energy minimization software to investigate whether HgTe, as well as HgS and HgSe, can form at simulated highland conditions. According to our calculations, approximately 1.3 wt% of mercury in the crust needs to be outgassed in order for HgS to be stable at 4 km in altitude. In addition, approximately 250 ppb of tellurium in the crust needs to be outgassed for HgTe to precipitate at the same altitude. The required mercury abundance for HgSe to be stable at this altitude is less, approximately 0.6 wt%; however, this is significantly larger than the 10–90 ppb generally present in basaltic rocks on Earth. Therefore, Hg-bearing minerals are likely not the source of the low radar emissivity signal.
Funder
Zonta International Foundation
Publisher
American Astronomical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Venus;Reference Module in Earth Systems and Environmental Sciences;2024
2. The “Snow Line” on Venus’s Maxwell Montes: Varying Elevation Implies a Dynamic Atmosphere;The Planetary Science Journal;2022-12-01