Mineralogical Characterization and Phase Angle Study of Two Binary Near-Earth Asteroids, Potential Targets for NASA’s Janus Mission

Author:

Le Corre LucilleORCID,Sanchez Juan A.ORCID,Reddy VishnuORCID,Battle AdamORCID,Cantillo David C.ORCID,Sharkey BenjaminORCID,Jedicke RobertORCID,Scheeres Daniel J.ORCID

Abstract

Abstract Ground-based characterization of spacecraft targets prior to mission operations is critical to properly plan and execute measurements. Understanding surface properties, such as mineralogical composition and phase curves (expected brightness at different viewing geometries), informs data acquisition during the flybys. Binary near-Earth asteroids (NEAs) (35107) 1991 VH and (175706) 1996 FG3 were selected as potential targets of the National Aeronautics and Space Administration’s (NASA) dual spacecraft Janus mission. We observed 1991 VH using the 3 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, on 2008 July 26. 1996 FG3 was observed with the IRTF for seven nights during the spring of 2022. Compositional analysis of 1991 VH revealed that this NEA is classified as an Sq-type in the Bus–DeMeo taxonomy classification, with a composition consistent with LL ordinary chondrites. Using thermal modeling, we computed the thermally corrected spectra for 1996 FG3 and the corresponding best-fit albedo of about 2%–3% for the best spectra averaged for each night. Our spectral analysis indicates that this NEA is a Ch-type. The best possible meteorite analogs for 1996 FG3, based on curve matching, are two carbonaceous chondrites, Y-86789 and Murchison. No rotational variation was detected in the spectra of 1996 FG3, which means there may not be any heterogeneities on the surface of the primary. However, a clear phase reddening effect was observed in our data, confirming findings from previous ground-based studies.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3