A Long-lived Lunar Magnetic Field Powered by Convection in the Core and a Basal Magma Ocean

Author:

Hamid Saira S.ORCID,O’Rourke Joseph G.ORCID,Soderlund Krista M.ORCID

Abstract

Abstract An internally generated magnetic field once existed on the Moon. This field reached high intensities (∼10–100 μT, perhaps intermittently) from ∼4.3 to 3.6 Gyr ago and then weakened to ≲5 μT before dissipating by ∼1.9–0.8 Gyr ago. While the Moon’s metallic core could have generated a magnetic field via a dynamo powered by vigorous convection, models of a core dynamo often fail to explain the observed characteristics of the lunar magnetic field. In particular, the core alone may not contain sufficient thermal, chemical, or radiogenic energy to sustain the high-intensity fields for >100 Myr. A recent study by Scheinberg et al. suggested that a dynamo hosted in electrically conductive, molten silicates in a basal magma ocean (BMO) may have produced a strong early field. However, that study did not fully explore the BMO’s coupled evolution with the core. Here we show that a coupled BMO–core dynamo driven primarily by inner core growth can explain the timing and staged decline of the lunar magnetic field. We compute the thermochemical evolution of the lunar core with a 1D parameterized model tied to extant simulations of mantle evolution and BMO solidification. Our models are most sensitive to four parameters: the abundances of sulfur and potassium in the core, the core’s thermal conductivity, and the present-day heat flow across the core–mantle boundary. Our models best match the Moon’s magnetic history if the bulk core contains ∼6.5–8.5 wt% sulfur, in agreement with seismic structure models.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing lunar paleointensity variability during the 3.9 - 3.5 Ga high field epoch;Earth and Planetary Science Letters;2024-07

2. Exoplanet Magnetic Fields;Reviews in Mineralogy and Geochemistry;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3