Abstract
Abstract
Centaurs are small bodies orbiting in the giant planet region that were scattered inward from their source populations beyond Neptune. Some members of the population display comet-like activity during their transition through the solar system, the source of which is not well understood. The range of heliocentric distances where the active Centaurs have been observed and their median lifetime in the region suggest that this activity is driven neither by water-ice sublimation nor entirely by supervolatiles. Here we present an observational and thermodynamical study of 13 Centaurs discovered in the Pan-STARRS1 detection database aimed at identifying and characterizing active objects beyond the orbit of Jupiter. We find no evidence of activity associated with any of our targets at the time of their observations with the Gemini North telescope in 2017 and 2018, or in archival data from 2013 to 2019. Upper limits on the possible volatile and dust production rates from our targets are 1–2 orders of magnitude lower than production rates in some known comets and are in agreement with values measured for other inactive Centaurs. Our numerical integrations show that the orbits of six of our targets evolved interior to r ∼ 15 au over the past 100,000 yr, where several possible processes could trigger sublimation and outgassing, but their apparent inactivity indicates that either their dust production is below our detection limit or the objects are dormant. Only one Centaur in our sample—2014 PQ70—experienced a sudden decrease in semimajor axis and perihelion distance attributed to the onset of activity for some previously known inactive Centaurs, and therefore it is the most likely candidate for any future outburst. This object should be a target of high interest for any further observational monitoring.
Publisher
American Astronomical Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献