RETRACTED: Redox Evolution of the Crystallizing Terrestrial Magma Ocean and Its Influence on the Outgassed Atmosphere

Author:

Maurice MaximeORCID,Dasgupta RajdeepORCID,Hassanzadeh PedramORCID

Abstract

Abstract Magma oceans (MOs) are episodes of large-scale melting of the mantle of terrestrial planets. The energy delivered by the Moon-forming impact induced a deep MO on the young Earth, corresponding to the last episode of core-mantle equilibration. The crystallization of this MO led to the outgassing of volatiles initially present in the Earth’s mantle, resulting in the formation of a secondary atmosphere. During outgassing, the MO acts as a chemical buffer for the atmosphere via the oxygen fugacity, set by the equilibrium between ferrous- and ferric-iron oxides in the silicate melts. By tracking the evolution of the oxygen fugacity during MO solidification, we model the evolving composition of a C-O-H atmosphere. We use the atmospheric composition to calculate its thermal structure and radiative flux. This allows us to calculate the lifetime of the terrestrial MO. We find that, upon crystallizing, the MO evolves from a mildly reducing to a highly oxidized redox state, thereby transiting from a CO- and H2-dominated atmosphere to a CO2- and H2O-dominated one. We find the overall duration of the MO crystallization to depend mostly on the bulk H content of the mantle, and to remain below 1.5 millions yr for up to nine Earth’s water oceans’ worth of H. Our model also suggests that reduced atmospheres emit lower infrared radiation than oxidized ones, despite of the lower greenhouse effect of reduced species, resulting in a longer MO lifetime in the former case. Although developed for a deep MO on Earth, the framework applies to all terrestrial planet and exoplanet MOs, depending on their volatile budgets.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3