On the Hydrosphere Stability of TESS Targets: Applications to 700 d, 256 b, and 203 b

Author:

Bonney PaulORCID,Kennefick Julia

Abstract

Abstract A main determinant of the habitability of exoplanets is the presence of stable liquid surface water. In an era of abundant possible targets, the potential to find a habitable world remains a driving force in prioritization. We present here a data-forward method to investigate the likelihood of a stable hydrosphere on the timescales of the formation of life, 1 Gyr, and beyond. As our primary application, we use this method to examine the potential hydrospheres of TESS objects of interest 700 d, 256 b (LHS 1140 b), and 203 b. We first present our selection criteria, which are based on an implementation of the Earth Similarity Index, as well as the results of an initial investigation into the desiccation of the targets, which reveals that TOI 203 b is almost certainly desiccated based on TESS observations. We then describe the characterization of the remaining targets and their host stars from 2MASS, Gaia, and TESS data and the derivation of sampled probability distributions for their parameters. Following this, we describe our process of simulating the desiccation of the targets’ hydrospheres using the Virtual Planet Simulator, VPlanet, with inputs directly linked to the previously derived probability distributions. We find that 50.86% of the likely cases for TOI 700 d are desiccated, and no modeled cases for TOI 256 b are without water. In addition, we calculate the remaining water inventory for the targets, the percentage of cases that are continuing to lose water, and the rate at which these cases are losing water.

Funder

NASA FINESST

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3