Abstract
Abstract
We report direct observational evidence for a latitudinal dependence of dust cloud opacity in ultracool dwarfs, indicating that equatorial latitudes are cloudier than polar latitudes. These results are based on a strong positive correlation between the viewing geometry and the mid-infrared silicate absorption strength in mid-L dwarfs using mid-infrared spectra from the Spitzer Space Telescope and spin axis inclination measurements from available information in the literature. We confirmed that the infrared color anomalies of L dwarfs positively correlate with dust cloud opacity and viewing geometry, where redder objects are inclined equator-on and exhibit more opaque dust clouds, while dwarfs viewed at higher latitudes and with more transparent clouds are bluer. These results show the relevance of viewing geometry to explain the appearance of brown dwarfs and provide insight into the spectral diversity observed in substellar and planetary atmospheres. We also find a hint that dust clouds at similar latitudes may have higher opacity in low-surface gravity dwarfs than in higher-gravity objects.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献