Identifying the Coronal Source Regions of Solar Wind Streams from Total Solar Eclipse Observations and in situ Measurements Extending over a Solar Cycle

Author:

Habbal Shadia R.ORCID,Druckmüller MiloslavORCID,Alzate NathaliaORCID,Ding AdalbertORCID,Johnson Judd,Starha Pavel,Hoderova Jana,Boe BenjaminORCID,Constantinou SageORCID,Arndt MartinaORCID

Abstract

Abstract This letter capitalizes on a unique set of total solar eclipse observations acquired between 2006 and 2020 in white light, Fe xi 789.2 nm (T fexi = 1.2 ± 0.1 MK), and Fe xiv 530.3 nm (T fexiv = 1.8 ± 0.1 MK) emission complemented by in situ Fe charge state and proton speed measurements from Advanced Composition Explorer/SWEPAM-SWICS to identify the source regions of different solar wind streams. The eclipse observations reveal the ubiquity of open structures invariably associated with Fe xi emission from Fe10+ and hence a constant electron temperature, T c = T fexi, in the expanding corona. The in situ Fe charge states are found to cluster around Fe10+, independently of the 300–700 km s−1 stream speeds, referred to as the continual solar wind. Thus, Fe10+ yields the fiducial link between the continual solar wind and its T fexi sources at the Sun. While the spatial distribution of Fe xiv emission from Fe13+ associated with streamers changes throughout the solar cycle, the sporadic appearance of charge states >Fe11+ in situ exhibits no cycle dependence regardless of speed. These latter streams are conjectured to be released from hot coronal plasmas at temperatures ≥T fexiv within the bulge of streamers and from active regions, driven by the dynamic behavior of prominences magnetically linked to them. The discovery of continual streams of slow, intermediate, and fast solar wind characterized by the same T fexi in the expanding corona places new constraints on the physical processes shaping the solar wind.

Funder

National Science Foundation

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3