A Massive Protocluster Anchored by a Luminous Quasar at z = 6.63

Author:

Wang FeigeORCID,Yang JinyiORCID,Hennawi Joseph F.ORCID,Fan XiaohuiORCID,Yue MinghaoORCID,Bañados EduardoORCID,Bechtel ShaneORCID,Bian FuyanORCID,Bosman SarahORCID,Champagne Jaclyn B.ORCID,Davies Frederick B.ORCID,Decarli RobertoORCID,Farina Emanuele PaoloORCID,Mazzucchelli ChiaraORCID,Venemans BramORCID,Walter FabianORCID

Abstract

Abstract Protoclusters, the progenitors of galaxy clusters, trace large scale structures in the early Universe and are important to our understanding of structure formation and galaxy evolution. To date, only a handful of protoclusters have been identified in the Epoch of Reionization. As one of the rarest populations in the early Universe, distant quasars that host active supermassive black holes are thought to reside in the most massive dark matter halos at that cosmic epoch and could thus potentially pinpoint some of the earliest protoclusters. In this Letter, we report the discovery of a massive protocluster around a luminous quasar at z = 6.63. This protocluster is anchored by the quasar and includes three [C ii] emitters at z ∼ 6.63, 12 spectroscopically confirmed Lyα emitters (LAEs) at 6.54 < z ≤ 6.64, and a large number of narrow-band-imaging selected LAE candidates at the same redshift. This structure has an overall overdensity of δ = 3.3 0.9 + 1.1 within ∼35 × 74 cMpc2 on the sky and an extreme overdensity of δ > 30 in its central region (i.e., R ≲ 2 cMpc). We estimate that this protocluster will collapse into a galaxy cluster with a mass of 6.9 1.4 + 1.2 × 10 15 M at the current epoch, more massive than the most massive clusters known in the local Universe such as Coma. In the quasar vicinity, we discover a double-peaked LAE, which implies that the quasar has a UV lifetime greater than 0.8 Myrs and has already ionized its surrounding intergalactic medium.

Funder

NASA Exoplanet Science Institute

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3