First Observational Evidence for an Interconnected Evolution between Time Lag and QPO Frequency among AGNs

Author:

Xia RuisongORCID,Liu HaoORCID,Xue YongquanORCID

Abstract

Abstract Quasiperiodic oscillations (QPOs) have been widely observed in black hole X-ray binaries (BHBs), which often exhibit significant X-ray variations. Extensive research has explored the long-term evolution of the properties of QPOs in BHBs. In contrast, such evolution in active galactic nuclei (AGNs) has remained largely unexplored due to limited observational data. By using the 10 new XMM-Newton observations for the narrow-line Seyfert 1 galaxy RE J1034+396 from publicly available data, we analyze the characteristics of its X-ray QPOs and examine their long-term evolution. The hard-band (1–4 keV) QPOs are found in all 10 observations and the frequency of these QPOs evolves ranging at (2.47–2.83) × 10−4 Hz. Furthermore, QPO signals in the soft (0.3–1 keV) and hard bands exhibit strong coherence, although, at times, the variations in the soft band lead those in the hard band (the hard-lag mode), while at other times, it is the reverse (the soft-lag mode). The observations presented here serendipitously captured two ongoing lag reversals between these two modes within about two weeks, which are first seen in RE J1034+396 and also among all AGNs. A transition in QPO frequency also takes place within a two-week timeframe, two weeks prior to its corresponding lag reversal, indicating a possible coherence between the transitions of QPO frequency and lag mode with delay. The diagram of time lag versus QPO frequency clearly evidences this interconnected evolution with hysteresis, which is, for the first time, observed among AGNs.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

China Manned Space Project

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3