Remarkably Compact Quiescent Candidates at 3 < z < 5 in JWST-CEERS

Author:

Wright LillianORCID,Whitaker Katherine E.ORCID,Weaver John R.ORCID,Cutler Sam E.ORCID,Wang 王 Bingjie 冰洁ORCID,Carnall AdamORCID,Suess Katherine A.ORCID,Bezanson RachelORCID,Nelson EricaORCID,Miller Tim B.ORCID,Ito KeiORCID,Valentino FrancescoORCID

Abstract

Abstract In this Letter, we measure the rest-frame optical and near-infrared sizes of 10 quiescent candidates at 3 < z < 5, first reported by Carnall et al. We use James Webb Space Telescope Near-Infrared Camera F277W and F444W imaging obtained through the public CEERS Early Release Science program and imcascade, an astronomical fitting code that utilizes multi-Gaussian expansion, to carry out our size measurements. When compared to the extrapolation of rest-optical size–mass relations for quiescent galaxies at lower redshift, 8 out of 10 candidates in our sample (80%) are on average more compact by ∼40%. A total of 7 out of 10 candidates (70%) exhibit rest-frame infrared sizes ∼10% smaller than rest-frame optical sizes, indicative of negative color gradients. Two candidates (20%) have rest-frame infrared sizes ∼1.4× larger than rest-frame optical sizes; one of these candidates exhibits signs of ongoing or residual star formation, suggesting this galaxy may not be fully quenched. The remaining candidate is unresolved in both filters, which may indicate an active galactic nucleus. Strikingly, we observe three of the most massive galaxies in the sample (log(M /M ) = 10.74–10.95) are extremely compact, with effective radii ∼0.7 kpc. Our findings provide no indication that the size evolution relation flattens out, and may indicate that the size evolution of quiescent galaxies is steeper than previously anticipated beyond z > 3.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3