Observations of a Flare-ignited Broad Quasiperiodic Fast-propagating Wave Train

Author:

Zhou XinpingORCID,Shen YuandengORCID,Liu Ying D.ORCID,Hu HuidongORCID,Su JiangtaoORCID,Tang ZehaoORCID,Zhou Chengrui,Duan YadanORCID,Tan Song

Abstract

Abstract Large-scale extreme-ultraviolet (EUV) waves are frequently observed as an accompanying phenomenon of flares and coronal mass ejections (CMEs). Previous studies mainly focused on EUV waves with single wave fronts that are generally thought to be driven by the lateral expansion of CMEs. Using high spatiotemporal resolution multi-angle imaging observations taken by the Solar Dynamics Observatory and the Solar Terrestrial Relations Observatory, we present the observation of a broad quasiperiodic fast-propagating (QFP) wave train composed of multiple wave fronts along the solar surface during the rising phase of a GOES M3.5 flare on 2011 February 24. The wave train transmitted through a lunate coronal hole (CH) with a speed of ∼840 ± 67 km s−1, and the wave fronts showed an intriguing refraction effect when they passed through the boundaries of the CH. Due to the lunate shape of the CH, the transmitted wave fronts from the north and south arms of the CH started to approach each other and finally collided, leading to a significant intensity enhancement at the collision site. This enhancement might hint at the occurrence of interference between the two transmitted wave trains. The estimated magnetosonic Mach number of the wave train is about 1.13, which indicates that the observed wave train was a weak shock. Period analysis reveals that the period of the wave train was ∼90 s, in good agreement with that of the accompanying flare. Based on our analysis results, we conclude that the broad QFP wave train was a large-amplitude fast-mode magnetosonic wave or a weak shock driven by some nonlinear energy release processes in the accompanying flare.

Funder

Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3