Abstract
Abstract
Using multipoint Magnetospheric Multiscale (MMS) observations in an unusual string-of-pearls configuration, we examine in detail observations of the reformation of a fast magnetosonic shock observed on the upstream edge of a foreshock transient structure upstream of Earth's bow shock. The four MMS spacecraft were separated by several hundred kilometers, comparable to suprathermal ion gyroradius scales or several ion inertial lengths. At least half of the shock reformation cycle was observed, with a new shock ramp rising up out of the “foot” region of the original shock ramp. Using the multipoint observations, we convert the observed time-series data into distance along the shock normal in the shock's rest frame. That conversion allows for a unique study of the relative spatial scales of the shock's various features, including the shock's growth rate, and how they evolve during the reformation cycle. Analysis indicates that the growth rate increases during reformation, electron-scale physics play an important role in the shock reformation, and energy conversion processes also undergo the same cyclical periodicity as reformation. Strong, thin electron-kinetic-scale current sheets and large-amplitude electrostatic and electromagnetic waves are reported. Results highlight the critical cross-scale coupling between electron-kinetic- and ion-kinetic-scale processes and details of the nature of nonstationarity, shock-front reformation at collisionless, fast magnetosonic shocks.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献