Kepler-411 Star Activity: Connection between Starspots and Superflares

Author:

Araújo AlexandreORCID,Valio AdrianaORCID

Abstract

Abstract Stellar magnetic activity, just like that of the Sun, manifests itself in the form of flares and spots on the surface of the star. In the solar case, the largest flares originate from large active regions. In this work, we present a study of the activity of the star Kepler-411, including spot modeling from planetary transits. Our goal was to search for a connection between the area of starspots with the energy of superflares produced by this star. Kepler-411 is a K2V-type star with an average rotation period of 10.52 days, radius of 0.79 R , and a mass of 0.83 M , which was observed by the Kepler satellite for about 600 days. Transit mapping allowed for the characterization of 198 starspots with estimates of their radius and temperature. Kepler-411 starspots had an average radius of (17 ± 7) × 103 km and a mean temperature of 3800 ± 700 K. Visual inspection of the light curves of Kepler-411 yields the identification of 65 superflares. The detected superflares lasted from 8 to 260 minutes and their energy varied from 1033–1035 ergs. The power-law index of the flare frequency distribution as a function of energy is (−2.04 ± 0.13) for the flare on Kepler-411. A positive correlation between the area of starspots and the energy of superflares was found when considering the averages taken every 16–35 days, with the highest correlation occurring for averages every 21 days. This timing is probably related to the lifetime of the Kepler-411 spots.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flaring latitudes in ensembles of low-mass stars;Monthly Notices of the Royal Astronomical Society;2023-06-07

2. The connection between starspots and superflares: a case study of two stars;Monthly Notices of the Royal Astronomical Society: Letters;2023-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3