Two Candidate Obscured Tidal Disruption Events Coincident with High-energy Neutrinos

Author:

Jiang NingORCID,Zhou ZiyingORCID,Zhu JiazhengORCID,Wang YiboORCID,Wang TingguiORCID

Abstract

Abstract Recently, three optical tidal disruption event (TDE) candidates discovered by the Zwicky Transient Facility (ZTF) have been suggested to be coincident with high-energy neutrinos. They all exhibit unusually strong dust infrared echoes, with their peak times matching the neutrino arrival time even better than the optical peaks. We hereby report on two new TDE candidates that are spatially and temporally coincident with neutrinos by matching our sample of mid-infrared outbursts in nearby galaxies (MIRONG) with Gold alerts of IceCube high-energy neutrino events up to 2022 June. The two candidates show negligible optical variability according to their ZTF light curves and can therefore be classified as part of the growing population of obscured TDE candidates. The chance probability of finding two such candidates is about ∼3% by redistributing the MIRONG sources randomly in the Sloan Digital Sky Survey footprint, which will be as low as ∼0.1% (or ∼0.2%) if we limit to sources with increased fluxes (or variability amplitudes) comparable with the two matched sources. Our findings further support the potential connection between high-energy neutrinos and TDEs in dusty environments by increasing the total number of neutrino-associated TDE and TDE candidates to five, although the underlying physics remains poorly understood.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3