Abstract
Abstract
The missing baryon problem is one of the major unsolved problems in astronomy. Fast radio bursts (FRBs) are bright millisecond pulses with unknown origins. The dispersion measure of FRBs is defined as the electron column density along the line of sight, and accounts for every ionized baryon. Here we measure the baryon content of the universe using 22 localized FRBs. Unlike previous works that fixed the value of dispersion measure of FRB host galaxies and ignored the inhomogeneities of the intergalactic medium (IGM), we use the probability distributions of dispersion measures contributed by host galaxies and IGM from the state-of-the-art IllustrisTNG simulations. We derive the cosmic baryon density of
Ω
b
=
0.0490
−
0.0033
+
0.0036
(1σ), with a precision of 7.0%. This value is dramatically consistent with other measurements, such as the cosmic microwave background and Big Bang nucleosynthesis. Our work supports that the baryons are not missing, but residing in the IGM.
Funder
National Science foundation of China
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献