Passing Stars as an Important Driver of Paleoclimate and the Solar System’s Orbital Evolution

Author:

Kaib Nathan A.ORCID,Raymond Sean N.ORCID

Abstract

Abstract Reconstructions of the paleoclimate indicate that ancient climatic fluctuations on Earth are often correlated with variations in its orbital elements. However, the chaos inherent in the solar system’s orbital evolution prevents numerical simulations from confidently predicting Earth’s past orbital evolution beyond 50–100 Myr. Gravitational interactions among the Sun’s planets and asteroids are believed to set this limiting time horizon, but most prior works approximate the solar system as an isolated system and neglect our surrounding Galaxy. Here we present simulations that include the Sun’s nearby stellar population, and we find that close-passing field stars alter our entire planetary system’s orbital evolution via their gravitational perturbations on the giant planets. This shortens the timespan over which Earth’s orbital evolution can be definitively known by a further ∼10%. In particular, in simulations that include an exceptionally close passage of the Sun-like star HD 7977 2.8 Myr ago, new sequences of Earth’s orbital evolution become possible in epochs before ∼50 Myr ago, which includes the Paleocene–Eocene Thermal Maximum. Thus, simulations predicting Earth’s past orbital evolution before ∼50 Myr ago must consider the additional uncertainty from passing stars, which can open new regimes of past orbital evolution not seen in previous modeling efforts.

Funder

National Science Foundation

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3