Abstract
Abstract
Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS from formation to merger. We analyze the recent gravitational-wave binary neutron star mergers GW170817 and GW190425 in the context of other DNS known from radio astronomy. By employing a model for the birth and evolution of DNS, we measure the mass distribution of DNS at birth, at midlife (in the radio), and at death (in gravitational waves). We consider the hypothesis that the high-mass gravitational-wave event GW190425 is part of a subpopulation formed through unstable case BB mass transfer, which quickly merge in ∼10–100 Myr. We find only mild evidence to support this hypothesis and that GW190425 is not a clear outlier from the radio population as previously claimed. If there are fast-merging binaries, we estimate that they constitute 8%–79% of DNS at birth (90% credibility). We estimate the typical delay time between the birth and death of fast-merging binaries to be ≈5–401 Myr (90% credibility). We discuss the implications for radio and gravitational-wave astronomy.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献