Calcium Bright Knots and the Formation of Chromospheric Anemone Jets on the Sun

Author:

Singh Kunwar Alkendra Pratap,Nishida KeisukeORCID,Shibata KazunariORCID

Abstract

Abstract Space-based observations show that the solar atmosphere from the solar chromosphere to the solar corona is filled with small-scale jets and is linked with small-scale explosions. These jets may be produced by mechanisms similar to those of large-scale flares and such jets may be related to the heating of the corona and chromosphere as well as the acceleration of solar wind. The chromospheric anemone jets on the Sun remain puzzling because their footpoints (or bright knots) have not been well resolved and the formation process of such enigmatic small-scale jets remains unclear. We propose a new model for chromospheric jets using the 3D magnetohydrodynamic simulations, which show that the continuous, upward rising of small-scale twisted magnetic flux ropes in a magnetized solar chromosphere drives small-scale magnetic reconnection and the launching of several small-scale jets during the evolution of the chromospheric anemone jets. Our new, self-consistent, 3D computer modeling of small-scale, but ever-changing flux rope emergence in the magnetized solar atmosphere is fully consistent with observations and provides a universal mechanism for nanoflare and jet formation.

Funder

Japan Society for the Promotion of Science

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3