The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background
-
Published:2021-12-01
Issue:2
Volume:923
Page:L22
-
ISSN:2041-8205
-
Container-title:The Astrophysical Journal Letters
-
language:
-
Short-container-title:ApJL
Author:
Arzoumanian Zaven, Baker Paul T.ORCID, Blumer HarshaORCID, Bécsy Bence, Brazier Adam, Brook Paul R.ORCID, Burke-Spolaor SarahORCID, Charisi MariaORCID, Chatterjee ShamiORCID, Chen Siyuan, Cordes James M.ORCID, Cornish Neil J.ORCID, Crawford FronefieldORCID, Cromartie H. ThankfulORCID, DeCesar Megan E.ORCID, DeGan Dallas M., Demorest Paul B.ORCID, Dolch TimothyORCID, Drachler Brendan, Ellis Justin A., Ferrara Elizabeth C.ORCID, Fiore WilliamORCID, Fonseca EmmanuelORCID, Garver-Daniels Nathan, Gentile Peter A.ORCID, Good Deborah C.ORCID, Hazboun Jeffrey S.ORCID, Holgado A. Miguel, Islo Kristina, Jennings Ross J.ORCID, Jones Megan L.ORCID, Kaiser Andrew R., Kaplan David L.ORCID, Kelley Luke ZoltanORCID, Key Joey ShapiroORCID, Laal NimaORCID, Lam Michael T., W. Lazio T. Joseph, Lorimer Duncan R.ORCID, Liu TingtingORCID, Luo JingORCID, Lynch Ryan S., Madison Dustin R., McEwen AlexanderORCID, McLaughlin Maura A.ORCID, Mingarelli Chiara M. F., Ng CherryORCID, Nice David J.ORCID, Olum Ken D., Pennucci Timothy T.ORCID, Pol Nihan S., Ransom Scott M.ORCID, Ray Paul S.ORCID, Romano Joseph D., Sardesai Shashwat C., Shapiro-Albert Brent J.ORCID, Siemens Xavier, Simon JosephORCID, Siwek Magdalena S., Spiewak Renée, Stairs Ingrid H.ORCID, Stinebring Daniel R.ORCID, Stovall KevinORCID, Sun Jerry P., Swiggum Joseph K.ORCID, Taylor Stephen R., Turner Jacob E.ORCID, Vallisneri MicheleORCID, Vigeland Sarah J.ORCID, Wahl Haley M.ORCID, Witt Caitlin A.ORCID
Abstract
Abstract
We search NANOGrav’s 12.5 yr data set for evidence of a gravitational-wave background (GWB) with all the spatial correlations allowed by general metric theories of gravity. We find no substantial evidence in favor of the existence of such correlations in our data. We find that scalar-transverse (ST) correlations yield signal-to-noise ratios and Bayes factors that are higher than quadrupolar (tensor-transverse, TT) correlations. Specifically, we find ST correlations with a signal-to-noise ratio of 2.8 that are preferred over TT correlations (Hellings and Downs correlations) with Bayesian odds of about 20:1. However, the significance of ST correlations is reduced dramatically when we include modeling of the solar system ephemeris systematics and/or remove pulsar J0030+0451 entirely from consideration. Even taking the nominal signal-to-noise ratios at face value, analyses of simulated data sets show that such values are not extremely unlikely to be observed in cases where only the usual TT modes are present in the GWB. In the absence of a detection of any polarization mode of gravity, we place upper limits on their amplitudes for a spectral index of γ = 5 and a reference frequency of f
yr = 1 yr−1. Among the upper limits for eight general families of metric theories of gravity, we find the values of
A
TT
95
%
=
(
9.7
±
0.4
)
×
10
−
16
and
A
ST
95
%
=
(
1.4
±
0.03
)
×
10
−
15
for the family of metric spacetime theories that contain both TT and ST modes.
Funder
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|