Distribution of s-, r-, and p-process Nuclides in the Early Solar System Inferred from Sr Isotope Anomalies in Meteorites

Author:

Schneider Jonas M.ORCID,Burkhardt ChristophORCID,Kleine ThorstenORCID

Abstract

Abstract Nucleosynthetic isotope anomalies in meteorites allow distinguishing between the noncarbonaceous (NC) and carbonaceous (CC) meteorite reservoirs and show that correlated isotope anomalies exist in both reservoirs. It is debated, however, whether these anomalies reflect thermal processing of presolar dust in the disk or are primordial heterogeneities inherited from the solar system’s parental molecular cloud. Here, using new high-precision 84Sr isotope data, we show that NC meteorites, Mars, and the Earth and Moon are characterized by the same 84Sr isotopic composition. This 84Sr homogeneity of the inner solar system contrasts with the well-resolved and correlated isotope anomalies among NC meteorites observed for other elements, and most likely reflects correlated s- and (r, p)-process heterogeneities leading to 84Sr excesses and deficits of similar magnitude, which cancel each other out. For the same reason there is no clearly resolved 84Sr difference between NC and CC meteorites, because in some carbonaceous chondrites the characteristic 84Sr excess of the CC reservoir is counterbalanced by an 84Sr deficit resulting from s-process variations. Nevertheless, most carbonaceous chondrites exhibit 84Sr excesses, which reflect admixture of refractory inclusions and more pronounced s-process heterogeneities in these samples. Together, the correlated variation of s- and (r, p)-process nuclides revealed by the 84Sr data of this study refute an origin of these isotope anomalies solely by processing of presolar dust grains, but points to primordial mixing of isotopically distinct dust reservoirs as the dominant process producing the isotopic heterogeneity of the solar system.

Funder

Deutsche Forschungsgemeinschaft

EC ∣ European Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3