Inferring Late-stage Enrichment of Exoplanet Atmospheres from Observed Interstellar Comets

Author:

Seligman Darryl Z.ORCID,Becker JulietteORCID,Adams Fred C.ORCID,Feinstein Adina D.ORCID,Rogers Leslie A.ORCID

Abstract

Abstract The discovery of the first two interstellar objects implies that, on average, every star contributes a substantial amount of material to the galactic population by ejecting such bodies from the host system. Because scattering is a chaotic process, a comparable amount of material should be injected into the inner regions of each system that ejects comets. For comets that are transported inwards and interact with planets, this Letter estimates the fraction of material that is accreted or outward-scattered as a function of planetary masses and orbital parameters. These calculations indicate that planets with escape velocities smaller than their current-day orbital velocities will efficiently accrete comets. We estimate the accretion efficiency for members of the current census of extrasolar planets and find that planetary populations including but not limited to hot and warm Jupiters, sub-Neptunes, and super-Earths can efficiently capture incoming comets. This cometary enrichment may have important ramifications for postformation atmospheric composition and chemistry. As a result, future detections and compositional measurements of interstellar comets will provide direct measurements of material that potentially enriched a subpopulation of the extrasolar planets. Finally, we estimate the efficiency of this enrichment mechanism for extrasolar planets that will be observed with the James Webb Space Telescope (JWST). With JWST currently operational and these observations imminently forthcoming, it is of critical importance to investigate how enrichment from interstellar comet analogs may affect the interpretations of exoplanet atmospheric compositions.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3