The ALMA REBELS Survey: The Cosmic H i Gas Mass Density in Galaxies at z ≈ 7

Author:

Heintz K. E.ORCID,Oesch P. A.ORCID,Aravena M.ORCID,Bouwens R. J.ORCID,Dayal P.ORCID,Ferrara A.ORCID,Fudamoto Y.ORCID,Graziani L.ORCID,Inami H.ORCID,Sommovigo L.ORCID,Smit R.ORCID,Stefanon M.ORCID,Topping M.ORCID,Pallottini A.ORCID,van der Werf P.ORCID

Abstract

Abstract The neutral atomic gas content of individual galaxies at large cosmological distances has until recently been difficult to measure due to the weakness of the hyperfine H i 21 cm transition. Here we estimate the H i gas mass of a sample of main-sequence star-forming galaxies at z ∼ 6.5–7.8 surveyed for [C ii] 158 μm emission as part of the Reionization Era Bright Emission Line Survey (REBELS), using a recent calibration of the [C ii]-to-H i conversion factor. We find that the H i gas mass excess in galaxies increases as a function of redshift, with an average of M Hi /M ≈ 10, corresponding to H i gas mass fractions of f Hi = M Hi /(M + M Hi ) = 90%, at z ≈ 7. Based on the [C ii] 158 μm luminosity function (LF) derived from the same sample of galaxies, we further place constraints on the cosmic H i gas mass density in galaxies (ρ Hi ) at this redshift, which we measure to be ρ H I = 7.1 3.0 + 6.4 × 10 6 M Mpc 3 . This estimate is substantially lower by a factor of ≈10 than that inferred from an extrapolation of damped Lyα absorber (DLA) measurements and largely depends on the exact [C ii] LF adopted. However, we find this decrease in ρ Hi to be consistent with recent simulations and argue that this apparent discrepancy is likely a consequence of the DLA sight lines predominantly probing the substantial fraction of H i gas in high-z galactic halos, whereas [C ii] traces the H i in the ISM associated with star formation. We make predictions for this buildup of neutral gas in galaxies as a function of redshift, showing that at z ≳ 5, only ≈10% of the cosmic H i gas content is confined in galaxies and associated with the star-forming ISM.

Funder

Carlsbergfondet

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3