True Pair-instability Supernova Descendant: Implications for the First Stars’ Mass Distribution

Author:

Koutsouridou IoannaORCID,Salvadori StefaniaORCID,Skúladóttir ÁsaORCID

Abstract

Abstract The initial mass function (IMF) of the first Population III (Pop III) stars remains a persistent mystery. Their predicted massive nature implies the existence of stars exploding as pair-instability supernovae (PISNe), but no observational evidence had been found. Now, the LAMOST survey claims to have discovered a pure PISN descendant, J1010+2358, at [Fe/H] = − 2.4. Here we confirm that a massive 250–260 M PISN is needed to reproduce the abundance pattern of J1010+2358. However, the PISN contribution can be as low as 10%, since key elements are missing to discriminate between scenarios. We investigate the implications of this discovery for the Pop III IMF, by statistical comparison with the predictions of our cosmological galaxy formation model, NEFERTITI. First, we show that the nondetection of mono-enriched PISN descendants at [Fe/H] < − 2.5 allows us to exclude (i) a flat IMF at a 90% confidence level; and (ii) a Larson-type IMF with characteristic mass m ch/M > 191.16x − 132.44, where x is the slope, at a 75% confidence level. Second, we show that if J1010+2358 has only inherited <70% of its metals from a massive PISN, no further constraints can be put on the Pop III IMF. If, instead, J1010+2358 will be confirmed to be a nearly pure (>90%) PISN descendant, it will offer strong and complementary constraints on the Pop III IMF, excluding the steepest and bottom-heaviest IMFs: m ch/M < 143.21x − 225.94. Our work shows that even a single detection of a pure PISN descendant can be crucial to our understanding of the mass distribution of the first stars.

Funder

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Publisher

American Astronomical Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3