On the Correlation between Young Massive Star Clusters and Gamma-Ray Unassociated Sources

Author:

Peron GiadaORCID,Morlino GiovanniORCID,Gabici Stefano,Amato ElenaORCID,Purushothaman ArchanaORCID,Brusa MarcellaORCID

Abstract

Abstract Star clusters (SCs) are potential cosmic-ray accelerators and therefore are expected to emit high-energy radiation. However, a clear detection of gamma-ray emission from this source class has only been possible for a handful of cases. This could in principle result from two different reasons: either detectable SCs are limited to a small fraction of the total number of Galactic SCs, or gamma-ray-emitting SCs are not recognized as such and therefore are listed in the ensemble of unidentified sources. In this Letter we investigate this latter scenario by comparing available catalogs of SCs and H ii regions, obtained from Gaia and Wide-field Infrared Survey Explorer observations, to the gamma-ray GeV and TeV catalogs built from Fermi Large Area Telescope (LAT), H.E.S.S., and LHAASO data. The significance of the correlation between catalogs is evaluated by comparing the results with simulations of synthetic populations. A strong correlation emerges between Fermi-LAT-unidentified sources and H ii regions that trace massive SCs in the earliest (≲1–2 Myr) phase of their life, where no supernova explosions have happened yet, confirming that winds of massive stars can alone accelerate particles and produce gamma-ray emission at least up to GeV energies. The association with TeV energy sources is less evident. Similarly, no significant association is found between Gaia SCs and GeV nor TeV sources. We ascribe this fact to the larger extension of these objects but also to an intrinsic bias in the Gaia selection toward SCs surrounded by a lower target gas density, which would otherwise hinder the detection in the optical wave band.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3