Recurring Activity Discovered on Quasi-Hilda 2009 DQ118

Author:

Oldroyd William J.ORCID,Chandler Colin OrionORCID,Trujillo Chadwick A.ORCID,Sheppard Scott S.ORCID,Hsieh Henry H.ORCID,Kueny Jay K.ORCID,Burris William A.ORCID,DeSpain Jarod A.ORCID,Farrell Kennedy A.ORCID,Mazzucato Michele T.ORCID,Bosch Milton K. D.ORCID,Shaw-Diaz Tiffany,Gonano Virgilio

Abstract

Abstract We have discovered two epochs of activity on quasi-Hilda 2009 DQ118. Small bodies that display comet-like activity, such as active asteroids and active quasi-Hildas, are important for understanding the distribution of water and other volatiles throughout the solar system. Through our NASA Partner Citizen Science project, Active Asteroids, volunteers classified archival images of 2009 DQ118 as displaying comet-like activity. By performing an in-depth archival image search, we found over 20 images from UT 2016 March 8–9 with clear signs of a comet-like tail. We then carried out follow-up observations of 2009 DQ118 using the 3.5 m Astrophysical Research Consortium Telescope at Apache Point Observatory, Sunspot, New Mexico, USA and the 6.5 m Magellan Baade Telescope at Las Campanas Observatory, Chile. These images revealed a second epoch of activity associated with the UT 2023 April 22 perihelion passage of 2009 DQ118. We performed photometric analysis of the tail and find that it had a similar apparent length and surface brightness during both epochs. We also explored the orbital history and future of 2009 DQ118 through dynamical simulations. These simulations show that 2009 DQ118 is currently a quasi-Hilda and that it frequently experiences close encounters with Jupiter. We find that 2009 DQ118 is currently on the boundary between asteroidal and cometary orbits. Additionally, it has likely been a Jupiter family comet or Centaur for much of the past 10 kyr and will be in these same regions for the majority of the next 10 kyr. Since both detected epochs of activity occurred near perihelion, the observed activity is consistent with sublimation of volatile ices. 2009 DQ118 is currently observable until ∼mid-October 2023. Further observations would help to characterize the observed activity.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3