On the Maximum Black Hole Mass at Solar Metallicity

Author:

Romagnolo AmedeoORCID,Gormaz-Matamala Alex C.ORCID,Belczynski Krzysztof

Abstract

Abstract In high-metallicity environments the mass that black holes (BHs) can reach just after core collapse widely depends on how much mass their progenitor stars lose via winds. On one hand, new theoretical and observational insights suggest that early-stage winds should be weaker than what many canonical models prescribe. On the other hand, the proximity to the Eddington limit should affect the formation of optically thick envelopes already during the earliest stages of stars with initial masses M ZAMS ≳ 100 M , hence resulting in higher mass-loss rates during the main sequence. We use the evolutionary codes MESA and Genec to calculate a suite of tracks for massive stars at solar metallicity Z = 0.014, which incorporate these changes in our wind-mass-loss prescription. In our calculations we employ moderate rotation, high overshooting, and magnetic angular momentum transport. We find a maximum BH mass M BH , max = 28.3 M at Z . The most massive BHs are predicted to form from stars with M ZAMS ≳ 250 M , with the BH mass directly proportional to its progenitor’s M ZAMS. We also find in our models that at Z almost any BH progenitor naturally evolves into a Wolf–Rayet star due to the combined effect of internal mixing and wind mass loss. These results are considerably different from most recent studies regarding the final mass of stars before their collapse into BHs. While we acknowledge the inherent uncertainties in stellar evolution modeling, our study underscores the importance of employing the most up-to-date physics in BH mass predictions.

Funder

Polish National Science Center

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3