Third and Fourth Harmonics of Electromagnetic Emissions by a Weak Beam in a Solar Wind Plasma with Random Density Fluctuations

Author:

Krafft C.ORCID,Savoini P.

Abstract

Abstract Electromagnetic emissions 3 and 4 at the third and fourth harmonics of the plasma frequency ω p were observed during the occurrence of type II and type III solar radio bursts. Two-dimensional particle-in-cell simulations are performed using a weak beam, high space and time resolutions, and a plasma with density fluctuations of a few percent, for parameters relevant to regions of type III bursts. For the first time, a detailed study of the different wave coalescence processes involved in the generation of 3 and 4 waves is presented and the impact of density fluctuations on the wave interaction mechanisms is demonstrated. Energy ratios between the second, third, and fourth harmonics 2 , 3 , and 4 are consistent with space observations. It is shown that, in both homogeneous and inhomogeneous plasmas, the dominant processes generating 3 ( 4 ) are the coalescence of 2 ( 3 ) with a Langmuir wave, in spite of the random density fluctuations modifying the waves’ resonance conditions by energy transport in the wavevector space and of the damping of Langmuir waves. The role of the backscattered (forward-propagating) Langmuir waves coming from the first (second) cascade of the electrostatic decay of beam-driven Langmuir waves is determinant in these processes. Understanding such wave coalescence mechanisms can provide indirect information on Langmuir and ion acoustic wave turbulence, the average level of density inhomogeneities, and suprathermal electron fluxes generated in solar wind regions where the harmonics manifest. Causes for the rarity of their observations are discussed.

Funder

GENCI

PNST/CNRS/INSU

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3