A Mathematical Treatment of the Offset Microlensing Degeneracy

Author:

Zhang KemingORCID,Gaudi B. ScottORCID

Abstract

Abstract The offset microlensing degeneracy, recently proposed by Zhang et al., has been shown to generalize the close–wide and inner–outer caustic degeneracies into a unified regime of magnification degeneracy in the interpretation of two-body planetary microlensing observations. While the inner–outer degeneracy expects the source trajectory to pass equidistant to the planetary caustics of the degenerate lens configurations, the offset degeneracy states that the same mathematical expression applies to any combination of the close, wide, and resonant caustic topologies, where the projected star–planet separations differ by an offset (s As B) that depends on where the source trajectory crosses the lens axis. An important implication is that the s A = 1/s B solution of the close–wide degeneracy never strictly manifests in observations except when the source crosses a singular point near the primary. Nevertheless, the offset degeneracy was proposed upon numerical calculations, and no theoretical justification was given. Here, we provide a theoretical treatment of the offset degeneracy, which demonstrates its nature as a mathematical degeneracy. From first principles, we show that the offset degeneracy formalism is exact to zeroth order in the mass ratio (q) for two cases: when the source crosses the lens axis inside of caustics, and for ( s A s B ) 6 1 when crossing outside of caustics. The extent to which the offset degeneracy persists in oblique source trajectories is explored numerically. Finally, it is shown that the superposition principle allows for a straightforward generalization to N-body microlenses with N − 1 planetary lens components (q ≪ 1), which results in a 2 N−1-fold degeneracy.

Funder

Gordon and Betty Moore Foundation

NASA ∣ Goddard Space Flight Center

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3