The Origin of Weakened Magnetic Braking in Old Solar Analogs

Author:

Metcalfe Travis S.ORCID,Finley Adam J.ORCID,Kochukhov OlegORCID,See VictorORCID,Ayres Thomas R.ORCID,Stassun Keivan G.ORCID,van Saders Jennifer L.ORCID,Clark Catherine A.ORCID,Godoy-Rivera DiegoORCID,Ilyin Ilya V.ORCID,Pinsonneault Marc H.ORCID,Strassmeier Klaus G.ORCID,Petit PascalORCID

Abstract

Abstract The rotation rates of main-sequence stars slow over time as they gradually lose angular momentum to their magnetized stellar winds. The rate of angular momentum loss depends on the strength and morphology of the magnetic field, the mass-loss rate, and the stellar rotation period, mass, and radius. Previous observations suggested a shift in magnetic morphology between two F-type stars with similar rotation rates but very different ages (88 Leo and ρ CrB). In this Letter, we identify a comparable transition in an evolutionary sequence of solar analogs with ages between 2–7 Gyr. We present new spectropolarimetry of 18 Sco and 16 Cyg A and B from the Large Binocular Telescope, and we reanalyze previously published Zeeman Doppler images of HD 76151 and 18 Sco, providing additional constraints on the nature and timing of this transition. We combine archival X-ray observations with updated distances from Gaia to estimate mass-loss rates, and we adopt precise stellar properties from asteroseismology and other sources. We then calculate the wind braking torque for each star in the evolutionary sequence, demonstrating that the rate of angular momentum loss drops by more than an order of magnitude between the ages of HD 76151 and 18 Sco (2.6–3.7 Gyr) and continues to decrease modestly to the age of 16 Cyg A and B (7 Gyr). We suggest that this magnetic transition may represent a disruption of the global dynamo arising from weaker differential rotation, and we outline plans to probe this phenomenon in additional stars spanning a wide range of spectral types.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3