Evidence for Evolved Stellar Binary Mergers in Observed B-type Blue Supergiants

Author:

Menon AthiraORCID,Ercolino AndreaORCID,Urbaneja Miguel A.ORCID,Lennon Daniel J.ORCID,Herrero ArtemioORCID,Hirai RyosukeORCID,Langer NorbertORCID,Schootemeijer AbelORCID,Chatzopoulos EmmanouilORCID,Frank JuhanORCID,Shiber SagivORCID

Abstract

Abstract Blue supergiants are the brightest stars in their host galaxies, and yet their evolutionary status has been a long-standing problem in stellar astrophysics. In this pioneering work, we present a large sample of 59 early B-type supergiants in the Large Magellanic Cloud with newly derived stellar parameters and identify the signatures of stars born from binary mergers among them. We simulate novel 1D merger models of binaries consisting of post main-sequence giants with helium-rich cores (primaries) and main-sequence companions (secondaries), and consider the effects of interaction of the secondary with the core of the primary along with the mixing induced by the merger in the envelope. Thereafter, the evolution of the newborn 17–43 M stars is followed until core-carbon depletion, close to their final pre-explosion stage. Unlike stars born alone with comparable masses, stars born from mergers of evolved binaries are blue throughout their core helium-burning phase and replicate the surface gravities and Hertzsprung–Russell diagram positions of most of our sample, thus indicating that B-type supergiants structurally resemble stars born from such mergers. Moreover, the large nitrogen-to-carbon and nitrogen-to-oxygen number ratios, coupled with helium enhancements exhibited by at least half our data sample, is uniquely reproduced by our merger models. Collectively, these findings provide compelling evidence toward the important role of binary mergers in producing the currently observed population of blue supergiants in our Universe.

Funder

Ministerio de Ciencia e Innovación

Deutsche Forschungsgemeinschaft

Early Career Award, U.S. Department of Energy

Publisher

American Astronomical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotational synchronisation of B-type binaries in 30 Doradus;Astronomy & Astrophysics;2024-08

2. The maximum black hole mass at solar metallicity;Astronomy & Astrophysics;2024-08

3. The Potential of Asteroseismology to Resolve the Blue Supergiant Problem;The Astrophysical Journal Letters;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3