Drivers of Magnetic Field Amplification at Oblique Shocks: In Situ Observations

Author:

Madanian HadiORCID,Gingell ImogenORCID,Chen Li-JenORCID,Monyek Eli

Abstract

Abstract Collisionless shocks are ubiquitous structures throughout the Universe. Shock waves in space and astrophysical plasmas convert the energy of a fast-flowing plasma to other forms of energy, including thermal and magnetic energies. Plasma turbulence and high-amplitude electric and magnetic fluctuations are necessary for effective energy conversion and particle acceleration. We survey and characterize in situ observations of reflected ions and magnetic field amplification rates at quasiperpendicular shocks under a wide range of upstream conditions. We report magnetic amplification rates as high as 25 in our current data set. Reflected ions interacting with the incoming plasma create magnetic perturbations that cause magnetic amplification in upstream and downstream regions of quasiperpendicular shocks. Our observations show that, in general, magnetic amplification increases with the fraction of reflected ions, which itself increases with Mach number. Both parameters plateau once full reflection is reached. Magnetic amplification continuously increases with the inverse of the magnetization parameter of the upstream plasma. We find that the extended foot region upstream of shocks and nonlinear processes within that region are key factors for intense magnetic amplification. Our observations at nonrelativistic shocks provide the first experimental evidence that below a certain magnetization threshold, the magnetic amplification efficiency at quasiperpendicular shocks becomes comparable to that at the quasiparallel shocks.

Funder

NASA ∣ Goddard Space Flight Center

Royal Society

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3