Photochemical Hazes Can Trace the C/O Ratio in Exoplanet Atmospheres

Author:

Corrales LíaORCID,Gavilan LissethORCID,Teal D. J.ORCID,Kempton Eliza M.-R.ORCID

Abstract

Abstract Photochemical hazes are suspected to obscure molecular features, such as water, from detection in the transmission spectra of exoplanets with atmospheric temperatures <800 K. The opacities of laboratory produced organic compounds (tholins) from Khare et al. have become a standard for modeling haze in exoplanet atmospheres. However, these tholins were grown in an oxygen-free, Titan-like environment that is very different from typical assumptions for exoplanets, where C/O ∼ 0.5. This work presents the 0.13–10 μm complex refractive indices derived from laboratory transmission measurements of tholins grown in environments with different oxygen abundances. With the increasing uptake of oxygen, absorption increases across the entire wavelength range, and a scattering feature around 6 μm shifts toward shorter wavelengths and becomes more peaked around 5.8 μm, due to a C = O stretch resonance. Using GJ 1214 b as a test case, we examine the transmission spectra of a sub-Neptune planet with C/O ratios of solar, 1, and 1000 to evaluate the effective differences between our opacities and those of Khare. For an atmosphere with solar hydrogen and helium abundances, we find a difference of 200–1500 ppm, but for high-metallicity (Z = 1000) environments, the difference may only be 20 ppm. The 1–2 μm transmission data for GJ 1214 b rule out the Titan-like haze model, and are more consistent with C/O = 1 and C/O = solar haze models. This work demonstrates that using haze opacities that are more consistent with underlying assumptions about bulk atmospheric composition are important for building self-consistent models that appropriately constrain the atmospheric C/O ratio, even when molecular features are obscured.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3