Abstract
Abstract
Galactic cosmic rays (GCRs) are highly energetic particles that can have significant effects on the atmospheres and potentially also surfaces of (exo)planets and moons. Their propagation through the Sun’s heliosphere and their interaction with planetary bodies have been widely studied in the solar system (e.g., Earth, Mars, Venus, and Europa). There is currently much interest in exoplanetary science, particularly in terms of characterizing the potential habitability of exoplanetary environments. As a consequence of this, models have been developed to quantify the effect of GCRs on exoplanet systems. However, many such studies assume Earth-like (1 au) GCR fluxes. Here we will demonstrate why this is not a reasonable assumption. We briefly discuss the journey that GCRs make from their birth to the arrival at an exoplanet, and discuss the various implications this will have on GCR fluxes. We demonstrate the importance of understanding the specific local interstellar medium (ISM) that an exoplanetary system resides within, as this determines the size of the astrosphere of the host star. This has strong implications for the modulation of GCR fluxes throughout an astrosphere. We estimate how GCR proton fluxes at 1 au (from the Sun) would be different from current values if the solar system was embedded in a different ISM environment. Furthermore, we provide estimates of the wide range of possible GCR proton fluxes at the exoplanets Kepler-20f and Kepler-88c using previously published estimates for the local ISM parameters at these bodies.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献