Resurrection of Type IIL Supernova 2018ivc: Implications for a Binary Evolution Sequence Connecting Hydrogen-rich and Hydrogen-poor Progenitors

Author:

Maeda KeiichiORCID,Michiyama TomonariORCID,Chandra PoonamORCID,Ryder StuartORCID,Kuncarayakti HanindyoORCID,Hiramatsu DaichiORCID,Imanishi MasatoshiORCID

Abstract

Abstract Long-term observations of synchrotron emission from supernovae (SNe), covering more than a year after the explosion, provide a unique opportunity to study the poorly understood evolution of massive stars in the final millennium of their lives via changes in the mass-loss rate. Here we present a result of our long-term monitoring of the peculiar Type IIL SN 2018ivc using the Atacama Large Millimeter/submillimeter Array. Following the initial decay, it showed unprecedented rebrightening starting ∼1 yr after the explosion. This is one of the rare examples showing such rebrightening in the synchrotron emission and the first case at millimeter wavelengths. We find it to be in the optically thin regime, unlike the optically thick centimeter emission. As such, we can robustly reconstruct the distribution of the circumstellar matter and thus the mass-loss history in the final ≳1000 yr. We find that the progenitor of SN 2018ivc had experienced a very high mass-loss rate (≳10−3 M yr−1) ∼1500 yr before the explosion, which was followed by a moderately high mass-loss rate (≳10−4 M yr−1) up until the explosion. From this behavior, we suggest that SN 2018ivc represents an extreme version of a binary evolution toward SNe IIb, which bridges the hydrogen-poor SNe (toward SNe Ib/c, without a hydrogen envelope) and hydrogen-rich SNe (SNe IIP, with a massive envelope).

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3